
Parallel Programming Machines
Map Reduce

Aakash Saravanan
Sahil Jaganmohan

Introduction
MapReduce is a model used to parallely process input sets and generate big data sets.

Two main processes are involved in this model: map step to parse input sets and sort into various
groups, and reduce step to perform a summary operation. In this implementation of MapReduce,
input files are parsed to retrieve word counts across all input files.

To perform a parallel MapReduce, the input files are spread across processors where
each process is responsible for either reading/parsing input files, mapping key/word pairs to
respective reducer queues, and reducing word pair counts across processes.

MapReduce is implemented sequentially, using OpenMP to spread work across
processes, and using MPI with OpenMP to run the OpenMP version across different nodes. With
these implementations, performance analysis and isoefficiency analysis is performed to
understand possible bottlenecks, efficiency of parallelism, and areas of future optimizations.

Sequential Implementation

The sequential implementation of MapReduce follows a standard process to concatenate
several input files to generate a combined word frequency table. The process is split up into 3
main sequential parts that execute after the previous has completed. The parts include text
parsing, handled by readers, word mapping, handled by mappers , and finally a word frequency
reduction, handled by reducers.

A more detailed process follows shown pictorially in Figure 1:

Figure 1:
MapReduce Sequential Implementation (15
iterations with 5 input files). The
implementation can be scaled to any number of
iterations where each iteration is defined as a
reader, mapper, or reducer block.

MapReduce OpenMP Implementation (15
Threads with 5 input files). Each block defined
is handled by a single thread. The program can
be scaled to handle multiple files and can be
scaled to various distribution of threads
amongst processes.

Readers
Input files are parsed individually in a sequential fashion, reading in word by word from

the files into a static sized buffer. Each word is processed to remove extraneous characters, and is
pipelined into a corresponding queue for the next process’ word mapping. Work queue load
balancing was implemented but is not critical on sequential implementation. By distributing the
same amount of slack for each queue, inserting the word on the least occupied queue.

It can be seen that each iteration takes a relatively equal amount of run time; however the total
run time across all mappers will still remain the same regardless of load balancing as shown in
Figure 2.

Number of Mappers File Size (words) Average Run Time (s) Standard Deviation

5 47,865 0.0007822 1.6821414922651E-5

5 236,525 0.004342 1.8756E-9

5 2,835,000 0.0626788 0.0008692008743668

Figure 2: The run time and deviation of run between mappers for a variety of file sizes while the
number of mapper iterations remain constant portraying expected load balancing

Mappers
Post text parsing begins the more arithmetic heavy portion of MapReduce where mapper

iterations retrieve a word from their relative work queue, designated by iteration number. The
word is then run through a hashing function to generate a corresponding hash number for it to be
placed onto a reduction work queue. Once again load balancing was implemented to distribute
words to each work queue. Words were placed in certain reduction queues each handling defined
ranges based on the arithmetic hash code. The distribution demonstrates an even distribution
across all the reduction queues as shown in Figure 3.

Number of Reducer
Queues

File Size (words) Average Queue Size
(words)

Standard Deviation

5 236,525 47,118 8,271

5 2,835,000 565,450 114,591

10 473,050 47,118 10,098

10 5,670,000 565,450 152,975

Figure 3: Size of Reduction Queues and Deviation given different number of threads

Reducers
The final reduction stage is handled by different iterations, the process includes retrieving

a word from the work queue, calculating the hash code, and inserting it onto the hashtable. Each
insertion is stored as (word,count) to efficiently retrieve the final word frequency of all the input
files combined. Since each iteration will handle words based on defined ranges, each reducer
will handle a certain portion of the hashtable. The effects of load balancing can be seen in Figure
4 demonstrating the balancing of run time across reducer iterations.

Number of Reducers File Size (words) Avg Run Time (s) Standard Deviation

5 236,525 0.0095008 0.0008139195046194

5 2,835,000 0.123196 0.0046195013150772

10 473,050 0.0106196 0.0012546168498789

10 5,670,000 0.2062479 0.090025634236533

Figure 4: Reducer average run time and std. deviation given different file sizes

Hash-Table Design
The hashing and hash table design is a crucial portion of MapReduce in order to reduce

the number of collisions and increase efficiency in work distribution of reducers.

Figure 5: Hash-Table Design. The
diagram shows an example for a
hash code to word pair with a hash
code collision.

The design is as follows:

Each word goes through a 8-bit hashing function that XORs sets of two characters producing a
single hash value, giving a max 8-bit hash value of 65536. The hashtable is designed to store a
linked-list for each hashcode where the length is dependent on the collisions. As shown in Figure
5 each node within the linked list contains a word and the relative count, this was the chosen
design to make the output generation to be more efficient as the final hashtable contains all the
word frequencies. The hashtable word insertion process accounts for three unique scenarios:

1. No Collision: Insertion of a node at the head of the corresponding linked list

2. Collision:
a. Insertion of node at the tail of the corresponding linked list
b. Count Incrementation of an existing node within linked list

The complexity of insertion into the hash-table is currently at O(n). The collisions to data ratio,
the number of collisions per 1000 words, We have marked this search + insertion time as a
possible speedup of our implementation based on data collected for a variety of file sizes shown
in Figure 5. We can evidently improve our run time and the time spent running sequentially to
insert elements into our hash-table in future updates.

OpenMP - Implementation
Utilizing parallel threads and processes, we are able to scale our MapReduce solution to larger
file sizes and multiple files. Our implementation takes advantage of multiple threads on a single
node to simultaneously parse through files, distribute words to work queues and reduce these
multiple files to a final hash-table.

The design implemented parallelism by spawning threads for each of the processes in Figure 1.
For a designated system, the number of threads can be predefined and the allocation of threads
per processes. For a 15 threaded system we originally designate 5 parser threads, 5 mapper
threads, and 5 reducer threads. As a contrast from the sequential implementation, each worker
queue, mapper and reducer, can be accessed simultaneously from each of the parallel threads.
When instantiated the threads do contain a shared memory for the two worker queues, and the
final hash-table. However a main complication that occurs with having shared memory are the
possibilities of race conditions. In order to prevent race conditions in our design we use locks on
all shared memory structures. The load balancing logic between the parser to mapper and
mapper to reducer allows each thread to access all other logic queues and therefore for each
insertion on the queue, the current thread must acquire the lock beforehand and release once the
insertion is completed. Finally each reducer thread must acquire a lock for the overarching
hash-table in order to place a newly created word pair generated from the reducer queue. The
next section will discuss the benefits of transitioning to a parallel implementation and the
run-time improvement.

OpenMP - Complexity Analysis and Optimizations

Figure 6: Time Performance of OpenMP with variable threads and multiple file sizes:
1.txt(47,865 words), 7.txt(236,525 words), 5.txt(2,835,000 words)

Figure 7: Time Performance of each part of MapReduce using OpenMP with variable threads
and multiple file sizes: 1.txt(47,865 words), 7.txt(236,525 words), 5.txt(2,835,000 words)

Figure 8: Karp-Flatt metrics - Speedup (Ψ) and Efficiency (ε) of OpenMP amongst variety of
files sizes: 1.txt(47,865 words), 7.txt(236,525 words), 5.txt(2,835,000 words)

The run time analysis demonstrates that the parallelism of OpenMP allows for a much faster and
efficient operation compared to the sequential MapReduce. The run times shown in Figure 6 and
the speedup (Ψ) shown in Figure 8 shows how parallelism outputs faster than the sequential

program. Using Karp-Flatt analysis we are able to see the communication effects and parallel
overhead cost making the program in-efficient as expected. As seen in the largest file 5.txt as we
increase the number of threads for reading, mapping, and reducing we generate a notable
speedup when we reach 8 threads where processes are parallely processing information while our
efficiency increases from 8 threads to 16 threads. As shown in Figure 7 we can also see that the
time for each MapReduce process decreases as the number of threads available increases.
Overall we can say that our program is able to parallely process large and multiple files
efficiently.

We are able to generate these speedups for our OpenMP implementation because we are able to
parallely read several files at once compared to a single file being read at a time sequentially. In
addition we are also able to map and reduce several queues at the same time. Both of these
reduce the amount being executed sequentially and as a result dramatically increases the program
run time and efficiency. As shown in Figure 8 the karp-flatt metric graphs display that the
implementation is able to handle larger files more efficiently than the smaller files. Along with
that and the efficiency graph displaying reduction in serial execution we can conclude our
implementation is highly scalable among large and multiple files

However we are able to identify bottlenecks and areas that can improve our speedup and
efficiency for our multi-processor program. A big area is being able to acquire locks for different
work queues for reading or writing. Therefore an optimization that would be implemented would
include writing information to the queues in large quantities. By doing so the overhead of lock
acquisition can be reduced drastically and increasing parallelism. Another big bottleneck
includes being able to read from the file and place the word in the corresponding queue which,
reading a single word from each file is extremely inefficient and increases run time significantly.
Therefore the designed solution includes buffer reading reducing the amount of total reads and
by doing so reducing run times for all programs shown in Figure 6. Lastly the biggest major
bottleneck includes that the mapper threads are waiting for reader threads to finish as well as the
reducer is waiting for mapper to finish. If this waiting is removed and each thread works
independently we can increase our speedup and efficiency dramatically.

MPI w/ OpenMP - Implementation
Our final addition to our implementation includes enhancing our single node parallel
implementation to a multi-node parallel implementation. This addition designates each node to
handle certain reduction functionality while also handling a much larger input size. This design is
set to read multiple files simultaneously and develop partial filled hash-tables from each node to
form a complete hash-table.

Figure 9: MapReduce MPI Implementation (4 Nodes, 15 Threads/Node, 20 Input Files)

As shown in Figure 9, the MPI implementation is designed to parallely process several
input files at once. With the introduction of multi-node parallelism we treat phases 1 and 2 of our
OpenMP process the same. Each node internally will spawn reader threads that will each take an
input file and place them on mapper queues through a parallel load balancing logic. The mapper
threads will retrieve words from the work queue and place them onto a communication buffer.

The communication buffer is designed to dynamically allocate for the total elements
tasked to communicate from the current node to each of the other respective nodes. In order for
the communication to take place between all nodes a MPI_Barrier() is placed after each mapper
thread has populated the communication buffer to verify all mapping is complete. To instantiate
the communication between all nodes, each node will generate a metadata structure to inform the
other nodes of the incoming communication. An MPI_allToall() is used to send and receive the
metadata from each node. Once the metadata is received, the node will dynamically allocate the
required size of a data_buffer in order to handle the transaction. Finally to complete the data
transaction an MPI_allToallV() is used to send the data from node to node. After the
communication is completed the received data will be placed on the reducer work queues to be
parallely processed to generate subsections of the final hash-table. Each node will handle certain
ranges of the hash-table, dependent on the number of reducer threads per node. Therefore each
node knows where to send the data received from the mapper work queue and will build a partial
hash-table to be combined to produce the MapReduce.

MPI w/ OpenMP - Complexity Analysis and Optimizations

Figure 10: Time Performance of MPI w/OpenMP with variable threads and multiple file sizes:
1.txt(47,865 words), 5.txt(2,835,000 words)

Figure 11: Time Performance of each part of MapReduce using MPI w/OpenMP with variable
threads and multiple file sizes: 1.txt(47,865 words), 5.txt(2,835,000 words)

Figure 12: Karp-Flatt metrics - Speedup (Ψ) and Efficiency (ε) of MPI w/OpenMP amongst
variety of files sizes: 1.txt(47,865 words),5.txt(2,835,000 words)

The run time analysis demonstrates that the parallelism of MPI w/OpenMP allows for a much
faster and efficient operation compared to the sequential and the OpenMP MapReduce

implementation. The run times shown in Figure 10 and the speedup (Ψ) shown in Figure 11
shows how running the OpenMP program across multiple nodes thru MPI enables better
runtimes compared to running the OpenMP program on one node. Using Karp-Flatt analysis we
are able to see the communication effects and parallel overhead cost making the program
in-efficient as expected. As seen in the largest file 5.txt, as the number of nodes is increased, the
speedups increase as well as the efficiency. As shown in Figure 11, we can also see that the time
for each MapReduce process decreases as the number of nodes the OpenMP program runs on
increases. From this, we are able to conclude that increasing the number of nodes the OpenMP
program runs on outweighs the added communication and overhead costs associated with the
MPI implementation.

We are able to generate these speedups for our MPI w/OpenMP implementation because we are
able to parallely read several files at once on each node as opposed to reading several files on
just one node. When considering Figure 12, it is important to note the efficiency difference
between parsing the smaller 1.txt file and the larger 5.txt file. As the number of nodes used
increases, the efficiency of parsing the 5.txt file decreases and is less than the efficiency of the
1.txt file. This can be attributed to the communication costs and overhead of communicating with
each node. With a larger file, more data needs to be properly communicated across all nodes
which adds to the run time. However, with the MPI w/OpenMP implementation, more files are
able to be parsed and this outweighs the costs of communicating across nodes.

An area of optimization is improved communication amongst nodes to process the overall word
count. In the current implementation, data that needs to be communicated must be first packed
into an array of strings with each element of the array being one word (having word count of 1),
communicated via MPI, and unpacked once the data has been received. A trivial optimization is
to communicate words with their respective word counts. Another optimization is to utilize
parallel programming techniques to have certain threads process data as it is being received and
sent. Therefore streamlining the results as the wait times of threads and in turn nodes are
decreased immensely.

